Électronique de puissance - Mécatronique

3. Actionneurs : Commande des machines triphasées

Valentin Gies

SEATECH - Parcours SYSMER

Plan du cours

Objectif du cours

Commande directe des machines synchrones et asynchrones :

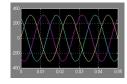
- Complexe.
- Non linéaire.

Objectifs:

- Obtenir une commande en vitesse linéaire du type de celle des moteurs à courant continu.
- Maximiser l'efficacité de la commande : optimisation du couple instantané.

Système triphasé équilibré :

 \bullet Triphasé : grandeurs déphasées de $\frac{2\pi}{3}.$



- Équilibré : $G_a(t) + G_b(t) + G_b(t) = 0$, \forall grandeur G.
- On note:

$$[v_{abc}] = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}, \quad [i_{abc}] = \begin{pmatrix} i_1 \\ i_2 \\ i_3 \end{pmatrix} \quad \textit{et} \ [\Phi_{abc}] = \begin{pmatrix} \Phi_1 \\ \Phi_2 \\ \Phi_3 \end{pmatrix}$$

Pourquoi le triphasé?

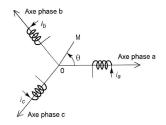
Création d'un champ tournant \Rightarrow **polyphasé**.

Pourquoi ne pas utiliser du diphasé (comme dans les modèles présenté au cours n°2)?

- **Diphasé**: 2 alimentations en tension en quadrature \Rightarrow 4 fils d'alimentation ($i_1 + i_2 \neq 0$).
- **Triphasé**: 3 alimentations de tension en décalage de $120^{\circ} \Rightarrow 3$ fils d'alimentation ($i_1 + i_2 + i_3 = 0$) donc pas besoin de fil de retour.

Autres avantages : réduits les harmoniques de rang 3.

Système triphasé et champs tournant :



Expression des forces magnétomotrices dans la direction OM:

$$egin{aligned} F_a(heta,t) &= extit{Ki}_a(t) cos(heta) \ F_b(heta,t) &= extit{Ki}_b(t) cos(heta - rac{2\pi}{3}) \ F_c(heta,t) &= extit{Ki}_c(t) cos(heta + rac{2\pi}{3}) \end{aligned}$$

Expression des courants :

$$i_a(t) = I \cos(\omega t)$$

 $i_b(t) = I \cos(\omega t - \frac{2\pi}{3})$
 $i_c(t) = I \cos(\omega t + \frac{2\pi}{3})$

Force magnétomotrice résultante :

$$F(\theta,t) = \frac{3}{2}K I \cos(\omega t - \theta)$$

 \Rightarrow Les 3 bobinages créent un champ tournant à la vitesse ω .

Système triphasé équilibré et asservissement :

- Triphasé équilibré \Leftrightarrow système lié : $G_c = -G_a G_b$
- Grandeurs statoriques et rotoriques : Déphasage spatio-temporel de $\theta = \omega_r t$ (angle entre le rotor et le stator).
- ⇒ L'asservissement des grandeurs triphasées non transformées est inutilement complexe.
- \Rightarrow On introduit des transformations vectorielles pour simplifier le problème.

Transformée de Concordia (1)

Triphasé équilibré \Leftrightarrow système lié : $G_c = -G_a - G_b$

- ⇒ Idée : Rendre ce système de tensions décorrélé.
 - Transformée de Concordia (matrice de passage orthogonale [Co]) :

$$\begin{bmatrix}G_0\\G_{\alpha}\\G_{\beta}\end{bmatrix} = \frac{1}{\sqrt{3}}\begin{bmatrix}1&1&1\\\sqrt{2}&\frac{-1}{\sqrt{2}}&\frac{-1}{\sqrt{2}}\\0&\frac{\sqrt{3}}{\sqrt{2}}&\frac{-\sqrt{3}}{\sqrt{2}}\end{bmatrix}\begin{bmatrix}G_a\\G_b\\G_c\end{bmatrix} = \begin{bmatrix}Co\end{bmatrix}\begin{bmatrix}G_a\\G_b\\G_c\end{bmatrix}$$

Transformée inverse de Concordia ([Co]⁻¹) :

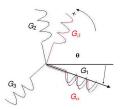
$$\begin{bmatrix} G_a \\ G_b \\ G_c \end{bmatrix} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & \sqrt{2} & 0 \\ 1 & \frac{-1}{\sqrt{2}} & \frac{\sqrt{3}}{\sqrt{2}} \\ 1 & \frac{-1}{\sqrt{2}} & \frac{-\sqrt{3}}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} G_0 \\ G_\alpha \\ G_\beta \end{bmatrix} = \begin{bmatrix} Co \end{bmatrix}^{-1} \begin{bmatrix} G_a \\ G_b \\ G_c \end{bmatrix}$$

Transformations vectorielles

Transformée de Concordia (2)

Propriétés :

 Permet de passer d'un système triphasé à un système diphasé (en quadrature) + composante homopolaire.



- Conserve les puissances.
- Décorrèle la matrice de couplage inductif entre phases.
- G_0 : composante homopolaire \Leftrightarrow nulle si système équilibré.

- Concordia au stator : système diphasé à axes fixes ⇒ OK
- Concordia au rotor : système diphasé à axes tournants
 ⇒ dépendant de θ.
- \Rightarrow Idée : Rendre le vecteur $[G_{0\alpha\beta}]$ au rotor indépendant de θ .
 - Matrice de rotation (matrice de passage orthogonale $[\rho(\theta)]$) :

$$\begin{bmatrix} G_0 \\ G_d \\ G_q \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} G_0 \\ G_{\alpha} \\ G_{\beta} \end{bmatrix} = \left[\rho(\theta) \right] \begin{bmatrix} G_0 \\ G_{\alpha} \\ G_{\beta} \end{bmatrix}$$

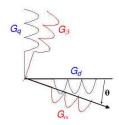
• Matrice de rotation inverse ($[\rho(\theta)]^{-1}$):

$$\begin{bmatrix} G_0 \\ G_{\alpha} \\ G_{\beta} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} G_0 \\ G_d \\ G_q \end{bmatrix} = \left[\rho(\theta) \right]^{-1} \begin{bmatrix} G_0 \\ G_d \\ G_q \end{bmatrix}$$

Matrice de rotation (2)

Propriétés :

 Permet de passer d'un système diphasé rotorique tournant à un système diphasé fixe.



Conserve les puissances.

Combinaison de la transformée de Concordia et de la rotation :

• Transformée de Park (orthogonale) : $[P] = [Co][\rho(\theta)]$

$$\begin{bmatrix} G_0 \\ G_d \\ G_q \end{bmatrix} = \sqrt{\frac{2}{3}} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \cos\theta & \cos\left(\theta - \frac{2\pi}{3}\right) & \cos\left(\theta + \frac{2\pi}{3}\right) \\ -\sin\theta & -\sin\left(\theta - \frac{2\pi}{3}\right) & -\sin\left(\theta + \frac{2\pi}{3}\right) \end{bmatrix} \begin{bmatrix} G_a \\ G_b \\ G_c \end{bmatrix}$$

• Transformée de Park inverse :[P]⁻¹ = [$\rho(\theta)$]⁻¹[Co]⁻¹

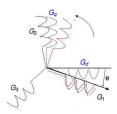
$$\begin{bmatrix} G_a \\ G_b \\ G_c \end{bmatrix} = \sqrt{\frac{2}{3}} \begin{bmatrix} \frac{1}{\sqrt{2}} & \cos\theta & -\sin\theta \\ \frac{1}{\sqrt{2}} & \cos\left(\theta - \frac{2\pi}{3}\right) & -\sin\left(\theta - \frac{2\pi}{3}\right) \\ \frac{1}{\sqrt{2}} & \cos\left(\theta + \frac{2\pi}{3}\right) & -\sin\left(\theta + \frac{2\pi}{3}\right) \end{bmatrix} \begin{bmatrix} G_0 \\ G_d \\ G_q \end{bmatrix}$$

Transformations vectorielles

Transformée de Park (2)

Propriétés :

 Permet de passer d'un système triphasé rotorique tournant à un système diphasé fixe.



- Conserve les puissances.
- G_0 : composante homopolaire \Leftrightarrow nulle si système équilibré.
- Il existe une transformée de Park conservant les courants (peu d'intérêt).

Application à une machine (synchrone ou asynchrone) :

Tensions statoriques dans une machine :

$$[v_{abc}] = [R][i_{abc}] + \frac{d}{dt}[\Phi_{abc}]$$

$$\Leftrightarrow [P]^{-1}[v_{odq}] = [R][P]^{-1}[i_{odq}] + \frac{d}{dt}([P]^{-1}[\Phi_{odq}])$$

On multiplie par [P] pour passer dans le repère de Park :

$$\Rightarrow [v_{odq}] = [R][i_{odq}] + [P]\frac{d}{dt} ([P]^{-1}[\Phi_{odq}])$$
$$[v_{odq}] = [R][i_{odq}] + [P]\frac{d[P]^{-1}}{dt}[\Phi_{odq}] + \frac{d[\Phi_{odq}]}{dt}$$

On montre que:

$$[P]\frac{d[P]^{-1}}{dt} = \frac{d\theta}{dt} \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & -1\\ 0 & 1 & 0 \end{bmatrix}$$

En projetant $[v_{odq}]$, on obtient alors :

$$\Rightarrow v_o = Ri_o + \frac{d\Phi_o}{dt} = 0 \text{ (equilibre)}$$

$$v_d = Ri_d + \frac{d\Phi_d}{dt} - \frac{d\theta}{dt}\Phi_q$$

$$v_q = Ri_q + \frac{d\Phi_q}{dt} + \frac{d\theta}{dt}\Phi_d$$

On obtient les puissances (active ou/et réactive) en multipliant par le courant :

$$\Rightarrow Ri_d^2 + (\frac{d\Phi_d}{dt} - \frac{d\theta}{dt}\Phi_q)i_d$$

$$Ri_q^2 + (\frac{d\Phi_q}{dt} + \frac{d\theta}{dt}\Phi_d)i_q$$

- Termes en Ri_d^2 : dissipation thermique (P_J)
- Termes en $\frac{d\Phi_d}{dt}i_d$ et $\frac{d\Phi_q}{dt}i_q$: puissance réactive (Q_e) .
- Termes en $\frac{d\theta}{dt} \Phi_d i_q$ et $-\frac{d\theta}{dt} \Phi_q i_d$: puissance active (P_e) .

Finalement, la puissance active est égale à :

$$P_e = \frac{d\theta}{dt} \Phi_d i_q - \frac{d\theta}{dt} \Phi_q i_d$$

or mécaniquement (p : nombre de paires de poles) :

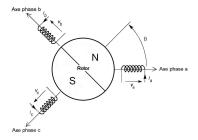
$$P_e = C_e \Omega = C_e \frac{1}{p} \frac{d\theta}{dt}$$

On a donc en éliminant P_e :

$$C_e = p(\Phi_d i_q - \Phi_q i_d)$$

Machine synchrone : commande scalaire

On considère une Machine Synchrone à Aimants Permanents (MSAP) à pôles lisses :



Rq : Dans une machine à pôles lisses, la valeur de l'inductance de chacun des enroulements statoriques ne varie pas lorsque le rotor tourne (les lignes de champs sont toujours canalisées de la même manière).

Machine synchrone : autopilotage scalaire (2)

Tensions statoriques dans une machine synchrone :

$$[v_{abc}] = R[i_{abc}] + \frac{d}{dt}[\Phi_{abc}]$$

$$[v_{abc}] = R[i_{abc}] + \underbrace{\begin{bmatrix} L & M & M \\ M & L & M \\ M & M & L \end{bmatrix}}_{Inductances\ statoriques} \underbrace{\frac{d}{dt}[i_{abc}] + \frac{d}{dt}}_{Inductances\ statoriques} \underbrace{\begin{bmatrix} \cos\theta \\ \cos\theta - \frac{2\pi}{3} \\ \cos\theta + \frac{2\pi}{3} \end{bmatrix}}_{Flux\ \Phi_f\ au\ stator} \Phi_f$$

Machine synchrone : autopilotage scalaire (3)

On montre (voir plus loin) que le couple moteur est de la forme :

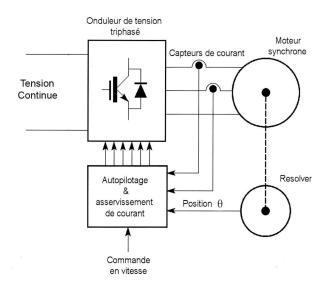
$$C = k \Phi_f I \sin \delta$$

Pour piloter la machine il faut maintenir l'angle δ à une valeur permettant d'obtenir le couple souhaité \Rightarrow Autopilotage

 \Rightarrow on observe θ de manière à piloter les courants $[i_{abc}]$ avec un décalage d'angle δ fixé.

Le pilotage se fait par asservissement des courants sur leur consignes.

Machine synchrone : autopilotage scalaire (3)



Machine synchrone : autopilotage scalaire (4)

Intérêt de l'autopilotage (scalaire ou vectoriel) :

- Permet de réaliser une commande en vitesse de la machine.
- Fort couple au démarrage

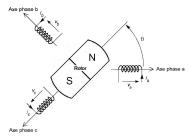
Inconvénients de l'autopilotage scalaire :

 L'asservissement se fait sur des courants sinusoïdaux ⇒ performances médiocres et difficile à implanter en temps réel.

La transformée de Park permet de transformer les courants sinusoïdaux $[i_{abc}]$ en courants constants $[i_{odq}]$: on commande alors la norme d'un vecteur courant \Rightarrow Contrôle vectoriel

Machine synchrone : autopilotage vectoriel (1)

On considère une Machine Synchrone à Aimants Permanents (MSAP) à pôles saillants (utilisée en mécatronique) :



Rq: La saillance des pôles (dissymétrie) va faire varier périodiquement (à chaque demi-tour) la valeur de l'inductance de chacun des enroulements statoriques (selon que lignes de champs sont canalisées ou non).

Machine synchrone: autopilotage vectoriel(2)

Tensions statoriques dans une machine synchrone :

$$[v_{abc}] = R[i_{abc}] + \frac{d}{dt}[\Phi_{abc}]$$

$$[v_{abc}] = R[i_{abc}] + \begin{bmatrix} L & M & M \\ M & L & M \\ M & M & L \end{bmatrix} \frac{d}{dt}[i_{abc}] + \frac{d}{dt} \begin{bmatrix} \cos \theta - \frac{2\pi}{3} \\ \cos \theta - \frac{2\pi}{3} \\ \cos \theta + \frac{2\pi}{3} \end{bmatrix} \Phi_{f}$$

$$+ \begin{bmatrix} L_{s}\cos(2\theta) & L_{s}\cos2(\theta + \frac{2\pi}{3}) & L_{s}\cos2(\theta - \frac{2\pi}{3}) \\ L_{s}\cos2(\theta + \frac{2\pi}{3}) & L_{s}\cos2(\theta - \frac{2\pi}{3}) & L_{s}\cos2\theta \\ L_{s}\cos2(\theta - \frac{2\pi}{3}) & L_{s}\cos2\theta & L_{s}\cos2(\theta + \frac{2\pi}{3}) \end{bmatrix} \frac{d}{dt}[i_{abc}]$$

Inductances dues aux poles saillants

Machine synchrone : autopilotage vectoriel (3)

On applique la transformée de Park :

$$\Rightarrow [v_{odq}] = \begin{bmatrix} R + sL_0 & 0 & 0 \\ 0 & R + sL_d & -L_q\omega \\ 0 & L_d\omega & R + sL_q \end{bmatrix} [i_{odq}] + \begin{bmatrix} 0 \\ s\Phi_f \\ 0 \end{bmatrix}$$

avec:

$$L_0 = L + 2M$$
 $L_d = L - M + \frac{3}{2}L_s$ $L_q = L - M - \frac{3}{2}L_s$ $s \Leftrightarrow \frac{d}{dt}$ (Laplace) $\omega = \frac{d\theta}{dt}$

Rq : On note que la transformée de Park permet de simplifier la matrice des inductances et de ne plus la faire dépendre de l'angle θ .

Machine synchrone : autopilotage vectoriel (4)

En introduisant les flux de Park $[\phi_{odq}]$ on obtient :

$$\Rightarrow [\textit{V}_{\textit{odq}}] = \begin{bmatrix} \textit{R} & \textit{0} & \textit{0} \\ \textit{0} & \textit{R} & \textit{0} \\ \textit{0} & \textit{0} & \textit{R} \end{bmatrix} [\textit{i}_{\textit{odq}}] + \begin{bmatrix} \textit{s} & \textit{0} & \textit{0} \\ \textit{0} & \textit{s} & -\omega \\ \textit{0} & \omega & \textit{s} \end{bmatrix} [\phi_{\textit{odq}}]$$

$$\text{avec } \Phi_{o} = L_{0} \textit{i}_{o}, \quad \Phi_{d} = L_{d} \textit{i}_{d} + \Phi_{f}, \quad \Phi_{q} = L_{q} \textit{i}_{q}.$$

On en déduit l'expression du couple :

$$C_e = p(\Phi_d i_q - \Phi_q i_d)$$

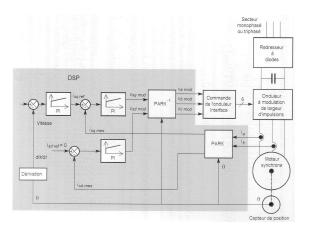
= $p((L_d i_d + \Phi_f) i_q - (L_q i_q) i_d)$
 $C_e = p(\Phi_f i_q + (L_d - L_q) i_d i_q)$

Machine synchrone : autopilotage vectoriel (5)

$$C_e = p(\Phi_f i_q + (L_d - L_q)i_d i_q)$$

- $L_d = L_q$ si la saillance est nulle (invariance du rotor par rotation) $\Leftrightarrow L_s = 0$ et les termes en $cos(2\theta)$ disparaissent. On retrouve une expression du couple du type : $C_e = p(\Phi_f i_q) = B_0 \; SI \; sin(\delta)$, avec δ l'angle entre l'aimant et le champ tournant.
- En pratique : $L_q > L_d \Rightarrow$ le courant i_d doit être maintenu à 0 pour avoir un couple maximal : commande vectorielle.
- Le réglage du couple se fait via le flux ou le courant iq.

Machine synchrone: autopilotage vectoriel (6)



Autopilotage d'une machine synchrone par commande vectorielle.

Machine synchrone : autopilotage vectoriel (7)

Intérêt de l'autopilotage vectoriel :

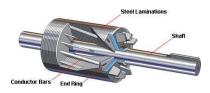
- Permet de réaliser une commande en vitesse de la machine.
- L'asservissement de fait sur des grandeurs fixes dans le temps $([i_{odg}])$.
- Une machine synchrone autopilotée vectoriellement est techniquement supérieure en tous points à une MCC de même puissance (couple de démarrage, précision, ...)

Inconvénients de l'autopilotage vectoriel :

 Nécessité d'avoir un contrôleur de type DSP pour réaliser les transformations de Park.

Machine asynchrone : commande scalaire

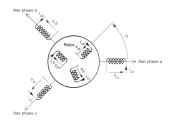
On considère une Machine Asynchrone à cage d'écureuil :



Rq: Dans une machine asynchrone à cage d'écureuil, les spires au rotor sont constituées par des barres de fer entourant le rotor et formant une cage cylindrique appelée cage d'écureuil.

Machine asynchrone : commande scalaire (2)

Enroulements dans une machine asynchrone :



Tensions statoriques dans une machine asynchrone :

$$[v_{s abc}] = R_s[i_{s abc}] + \frac{d}{dt}[\Phi_{s abc}]$$

Tensions rotoriques (court-circuit) dans une machine asynchrone :

$$[v_{r abc}] = R_r[i_{r abc}] + \frac{d}{dt}[\Phi_{r abc}] = [0]$$

Machine asynchrone : commande scalaire (2)

$$\begin{bmatrix} [V_s] \\ [V_r] \end{bmatrix} = R \begin{bmatrix} [I_s] \\ [I_r] \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} [L_s] & [M_{sr}] \\ [M_{sr}] & [L_s] \end{bmatrix} \begin{bmatrix} [I_s] \\ [I_r] \end{bmatrix}$$

avec

$$[L_{s}] = \begin{bmatrix} I_{s} & M_{s} & M_{s} \\ M_{s} & I_{s} & M_{s} \\ M_{s} & M_{s} & I_{s} \end{bmatrix} \qquad [L_{r}] = \begin{bmatrix} I_{r} & M_{r} & M_{r} \\ M_{r} & I_{r} & M_{r} \\ M_{r} & M_{r} & I_{r} \end{bmatrix}$$

$$[\textit{M}_{\textit{S}}\textit{r}] = [\textit{M}_{\textit{r}}\textit{S}] = \textit{M}_{\textit{S}\textit{r}} \begin{bmatrix} \cos\left(\theta\right) & \cos\left(\theta + \frac{2\pi}{3}\right) & \cos\left(\theta - \frac{2\pi}{3}\right) \\ \cos\left(\theta - \frac{2\pi}{3}\right) & \cos\left(\theta\right) & \cos\left(\theta + \frac{2\pi}{3}\right) \\ \cos\left(\theta + \frac{2\pi}{3}\right) & \cos\left(\theta - \frac{2\pi}{3}\right) & \cos\left(\theta\right) \end{bmatrix}$$

Machine asynchrone : commande scalaire (3)

On montre que le couple moteur moyen est égal à :

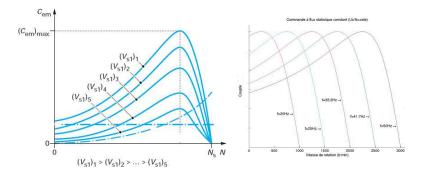
$$< C> = 3\rho\omega_s\Phi_s^2rac{rac{R}{g}}{\left[\left(rac{R}{g}
ight)^2 + (N\omega_s)^2
ight]} = 3\rho\Phi_s^2rac{rac{R}{\omega_r}}{\left[\left(rac{R}{\omega_r}
ight)^2 + (N)^2
ight]}$$

avec
$$N = \left(L_r - \frac{M^2}{L_s}\right) \left(\frac{L_s}{M}\right)^2$$
 $M = \frac{2}{3}M_{sr}$ $R = R_r \left(\frac{L_s}{M}\right)^2$

Le couple peut être réglé entre autres par :

- Le flux statorique (via la tension d'alimentation par exemple)
- La pulsation ω_s d'alimentation.
- La résistance rotorique (automatique grâce à l'effet de peau sur un rotor à cage profonde)

Machine asynchrone : commande scalaire (4)



Evolution du couple pour diverses tensions et fréquences d'alimentation.

Machine asynchrone : commande scalaire (3)

Pour une pulsation d'alimentation ω_s donnée et à flux constant, le couple est maximal lorsque la valeur du glissement vaut :

$$g=rac{R}{N\omega_s}$$

Ce qui nous donne :

$$\omega_{s} = \omega_{r} + \frac{R}{N}$$

Il faut donc asservir la vitesse du champ tournant statorique sur la vitesse de rotation de la machine pour maximiser le couple :

On utilise un autopilotage scalaire permettant d'asservir les tensions statoriques V_{abc} .

Machine asynchrone : commande scalaire (4)

Intérêt de la commande scalaire :

- Permet de réaliser une commande en vitesse de la machine.
- Fort couple au démarrage

Inconvénients de la commande scalaire :

 L'asservissement se fait sur des courants sinusoïdaux ⇒ performances médiocres et difficile à implanter en temps réel.

La transformée de Park permet de transformer les courants sinusoïdaux $[i_{abc}]$ en courants constants $[i_{odq}]$: on commande alors la norme d'un vecteur courant \Rightarrow Contrôle vectoriel

Machine asynchrone : commande vectorielle (1)

Rappel: Tensions dans une machine asynchrone

$$\begin{bmatrix} [V_s] \\ [V_r] \end{bmatrix} = R \begin{bmatrix} [I_s] \\ [I_r] \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} [L_s] & [M_{sr}] \\ [M_{sr}] & [L_s] \end{bmatrix} \begin{bmatrix} [I_s] \\ [I_r] \end{bmatrix}$$

Après application de la transformée de Park, on a :

$$\begin{bmatrix} V_{sd} \\ V_{sq} \\ V_{rd} \\ V_{rd} \end{bmatrix} = \begin{bmatrix} R_s \\ R_s \\ R_r \\ R_r \end{bmatrix} \begin{bmatrix} i_{sd} \\ i_{sq} \\ i_{rd} \\ i_{rq} \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} \Phi_{sd} \\ \Phi_{sq} \\ \Phi_{rd} \\ \Phi_{rq} \end{bmatrix} + \begin{bmatrix} \omega_s \Phi_{sq} \\ \omega_s \Phi_{sd} \\ \omega_r \Phi_{rq} \\ \omega_r \Phi_{rq} \end{bmatrix}$$

avec $\Phi_{sd} = L_s I_{sd} + M i_{rd}$, $\Phi_{sq} = L_s I_{sq} + M i_{rq}$, $\Phi_{rd} = L_r I_{rd} + M i_{sd}$. On choisit la référence d'angle au rotor pour avoir $\Phi_{rq} = 0$.

Machine asynchrone : commande vectorielle (2)

Les enroulements au rotor sont en court-circuit, on a donc :

$$V_{rd} = R_r i_{rd} + \frac{d\Phi_{rd}}{dt} = 0$$
$$V_{rq} = R_r i_{rq} + \omega_r \Phi_{rd} = 0$$

En remplaçant i_{rd} par $\frac{1}{L_r}(\Phi_r d - Mi_{sd})$ et i_{rq} par $\frac{Mi_{sq}}{L_r}$, on obtient :

$$\tau_r \frac{d\Phi_{rd}}{dt} + \Phi_{rd} = M i_{sd}$$
$$\omega_r \tau_r \Phi_{rd} = M i_{sq}$$

- Le flux rotorique (Φ_{rd}) est fixé par le courant i_{sd} ($\tau_r = L_r/R_r \simeq 100 ms$).
- A Φ_{rd} fixé, la pulsation rotorique ω_r (et donc le glissement) sont fixés par i_{sq} .

Machine asynchrone : commande vectorielle (3)

Expression du couple moteur dans le repère de Park :

$$C_e = p(\Phi_{sd}i_{sq} - \Phi_{sq}i_{sd})$$

avec
$$\Phi sd = \sigma L_s i_{sd} + \left(\frac{M}{L_r}\right) \Phi_{rd}$$
, $\Phi sq = \sigma L_s i_{sq}$ et $\sigma = 1 - \frac{M^2}{L_r L_s}$.

On obtient donc:

$$C_e = p\left(\frac{M}{L_r}\right)\Phi_{rd} i_{sq}$$

Machine asynchrone : commande vectorielle (4)

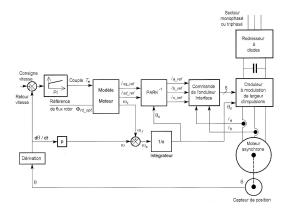
Commande vectorielle d'une machine asynchrone :

$$C_{e} = p\left(rac{M}{L_{r}}
ight)\Phi_{rd}\;i_{sq}$$

- On fixe le flux Φ_{rd} à une valeur constante (nominale) à l'aide de i_{sd} .
- On règle le couple à la valeur souhaitée à l'aide de isq.
- La vitesse du champ tournant ω_s est fixée par la mesure de ω et par l'estimation de ω_r à l'aide d'un modèle du moteur ($\omega_r = \frac{M}{\tau_r \Phi_{rd}} \int$.

Machine asynchrone : commande vectorielle (5)

Commande vectorielle d'une machine asynchrone : schéma synoptique



Machine asynchrone : commande vectorielle (5)

Intérêt de la commande vectorielle :

- Permet de réaliser une commande en vitesse de la machine.
- L'asservissement de fait sur des grandeurs fixes dans le temps.
- Le réglage du flux et celui du couple sont distincts.
- Une machine asynchrone pilotée en commande vectorielle est techniquement supérieure en tous points à une MCC de même puissance (couple de démarrage, précision, ...)

Inconvénients de la commande vectorielle :

 Nécessité d'avoir un contrôleur de type DSP pour réaliser les transformations de Park.

Bibliographie

- Convertisseurs statiques. Modélisation et commande de la machine asynchrone.
 Caron Hautier. (Technip)
- Introduction à l'electrotechnique approfondie. Séguier, Notelet et Lesenne (Tec et Doc).
- Convertisseurs de l'électronique de puissance (Tomes 1, 2, 3, 4). Séguier (Tec et Doc).
- Techniques de l'ingénieur (http://www.techniques-ingenieur.fr)
- Commande électronique des moteurs électriques. M. Pinard (Dunod).