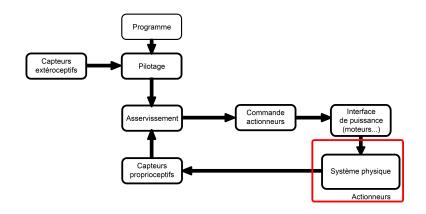
Électronique de puissance - Mécatronique


2. Actionneurs: Modélisation

Valentin Gies ISEN

SEATECH - Parcours SYSMER

Plan du cours

Positionnement dans une chaine mécatronique

Les machines tournantes

Utilité en mécatronique

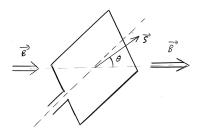
Actionneurs dans les systèmes mécatroniques : 90% de machines tournantes.

En mécatronique , on souhaite avoir une machine ayant des **atouts** parmi les suivants :

- Faible coût de fabrication.
- Faible coût de pilotage : commande simple.
- Caractéristiques électromécaniques spécifiquement adaptées au problème (fort couple, faible inertie, faible encombrement, précision, possibilité de débrayage...).
- Rendement élevé (moins d'échauffement, low power).

Les machines tournantes

Utilité en mécatronique


Les machines tournantes

Machines étudiées en cours

Dans ce cours, nous passerons en revue les machines suivantes (les plus courantes) :

- Machines à courant continu.
- Machines synchrones.
- Machines asynchrones.

Spire alimentée par un courant I placée dans un champ magnétique.

Moment magnétique de la spire :

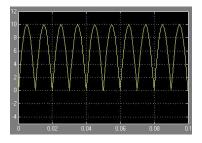
$$\overrightarrow{M} = I\overrightarrow{S}$$


Couple électromagnétique :

$$\overrightarrow{C} = \overrightarrow{M} \wedge \overrightarrow{B}$$

Couple scalaire instantané :

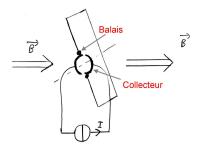
$$C = B.S.I\sin\theta$$
$$= \Phi I\sin(\theta)$$



Couple Moyen:

$$< C >= 0$$

Solution : inverser le courant à chaque fois que le couple devient négatif :



$$< C> = {2\Phi I \over \pi}$$

Pour cela on utilise un inverseur mécanique : Collecteur+Balais

Système collecteur-Balais :

Equations de la machine à courant continu :

• Mécanique :

$$J\frac{d^2\theta}{dt^2} + f\frac{d\theta}{dt} = C - Cr \quad \Rightarrow \quad \frac{d^2\theta}{dt^2} = \frac{1}{J}\left((C - Cr) - f\frac{d\theta}{dt}\right)$$

Electrique :

$$U = E + RI + L\frac{dI}{dt}$$
 \Rightarrow $\frac{di}{dt} = \frac{1}{L}(-Ri + U - K\frac{d\theta}{dt})$

• Couplage électromécanique :

$$E = K\Omega$$

$$C = KI$$

Modélisation dans le domaine de Laplace :

• Mécanique :

$$(Js+f)\Omega(s)=C(s)-Cr$$

• Electrique :

$$U(s) = E(s) + (R + Ls)I(s)$$

Couplage électromécanique :

$$E(s) = K\Omega(s)$$

$$C(s) = KI(s)$$

Machine à courant continu : Fonction de transfert

$$\begin{split} H(s) &= \frac{\Omega(s)}{U(s)} = \frac{K_0}{1 + (\tau + \alpha \tau_e)s + \tau \tau_e s^2} \\ \text{avec } \tau_{em} &= \frac{JR}{K^2 + Rf}, \tau_e = \frac{L}{R}, K_0 = \frac{K}{K^2 + Rf} \text{ et } \alpha = \frac{Rf}{K^2 + Rf} \ll 1 \end{split}$$

Simplification : $KI \gg f\Omega$ et $K\Omega \gg RI$, donc : $K^2 \gg Rf \Leftrightarrow \alpha \ll 1$:

$$\begin{split} \Rightarrow \textit{H(s)} &\simeq \frac{\textit{K}_0}{1 + \tau_{\textit{em}} s + \tau_{\textit{em}} \tau_{\textit{e}} s^2} \\ \textit{H(s)} &\simeq \frac{\textit{K}_0}{(1 + \tau_{\textit{em}} s)(1 + \tau_{\textit{e}} s)} \quad (\textit{avec} \ \tau_{\textit{e}} = \frac{\textit{L}}{\textit{R}} \quad \tau_{\textit{em}} = \frac{\textit{JR}}{\textit{K}^2}) \end{split}$$

Machine à courant continu : Fonction de transfert

Fonction de transfert à 2 pôles stables :

$$\Rightarrow \textit{H}(\textit{s}) = \frac{\Omega(\textit{s})}{\textit{U}(\textit{s})} = \frac{\textit{K}_{0}}{(1 + \tau_{\textit{em}}\textit{s})(1 + \tau_{\textit{e}}\textit{s})}$$

- $au_{em} \simeq rac{JR}{K^2}$ (c^{ste} de temps électro-mécanique).
- $\tau_e = \frac{L}{R}$ (c^{ste} de temps électrique).
- $K_0 \simeq \frac{1}{K}$: à basse fréquence, on a donc $U(s) = K\Omega(s)$.

La MCC permet un pilotage de la vitesse en tension.

Machine à courant continu : Comparatif

La reine de la mécatronique actuelle :

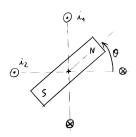
Avantages:

- Commande simple (pilotage en tension).

Inconvénients :

- Oscillations de couple (précision imparfaite).
- Frottement mécanique (balais sur collecteur).
- Coût élevé pour les fortes puissances.

Utilisée dans l'industrie automobile : Megane Scénic (Renault) $\Rightarrow \approx$ 200 MCC !



Machine synchrone

Machine synchrone triphasée à rotor externe (lecteur CD, 135g)

Aimant dans un champ tournant :

Champ créé par l'aimant :

$$\overrightarrow{B} = B_0(\cos\theta \overrightarrow{u_p} + \sin\theta \overrightarrow{u_q})$$

Courants i_1 et i_2 :

$$i_1 = I \cos \omega t$$
$$i_2 = I \sin \omega t$$

Moments magnétiques créés par les spires :

$$\overrightarrow{M_1} = S i_1 \overrightarrow{u_p} = SI \cos \omega t \overrightarrow{u_p}$$

$$\overrightarrow{M_2} = S i_2 \overrightarrow{u_q} = SI \sin \omega t \overrightarrow{u_q}$$

Couple exercé par les spires sur l'aimant :

$$\overrightarrow{C} = (\overrightarrow{M_1} + \overrightarrow{M_1}) \wedge \overrightarrow{B}$$

$$= (\cos \theta \sin \omega t - \sin \theta \cos \omega t) B_0 SI \overrightarrow{u_z}$$

$$= (\sin (\omega t - \theta)) B_0 SI \overrightarrow{u_z}$$

Condition pour avoir un couple moyen non nul : $\omega t = \theta + \delta$ \Rightarrow Synchronisme

Couple exercé par les spires sur l'aimant :

$$\overrightarrow{C} = B_0 \ SI \ \sin \delta \ \overrightarrow{u_z}$$

 δ dépend du couple demandé :

- $\sin \delta = 0$: couple nul
- $\sin \delta = 1$: couple maximal
- $\sin \delta > 1$: impossible \Rightarrow décrochage de la machine synchrone (C = 0 car ωt et θ n'ont pas la même pulsation)

Machine synchrone : Comparatif

Avantages:

- Couple de démarrage excellent.
- Couple lisse ⇒ positionnement très précis.
- Rendement excellent (peu de pertes mécaniques)

Inconvénients :

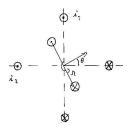
- Coût élevé (aimants au rotor).
- Nécessité d'un autopilotage : asservissement de la pulsation d'alimentation en fonction de la vitesse du rotor.

Utilisé pour les démarrages à fort couple (moteur hybride, traction, levage...).

Machine synchrone : Commande

- On souhaite une **commande simple** de type $\Omega = KU$ comme pour la machine à courant continu.
- On a une machine dont il faut asservir la fréquence d'alimentation sur la fréquence de rotation.

⇒ Autopilotage


- Autopilotage scalaire : pilotage des courants par asservissement sur une consigne sinusoïdale.
- Autopilotage vectoriel : pilotage des courants par asservissement sur une consigne constante après transformation vectorielle.

Machine asynchrone

Moteur asynchrone triphasé (450 kW)

Spire dans un champ tournant :

Champs statoriques :

$$\overrightarrow{B_1} = -B_0 \sin(\omega_s t) \overrightarrow{u_x}$$

$$\overrightarrow{B_2} = B_0 \cos(\omega_s t) \overrightarrow{u_y}$$

Rotor : Spire = {Résistance(R)+Inductance(L)}

Principe de fonctionnement :

- Rotor : pulsation ω_r
- Stator : pulsation ω_s
- Champ tournant au stator ($(\omega_s)_{/Stator}$)
 - \Rightarrow Flux au rotor ($(\omega_s \omega_r)_{/Rotor}$)
 - \Rightarrow Force électromotrice rotorique ($(\omega_s-\omega_r)_{/\mathit{Rotor}})$
 - \Rightarrow Courant rotorique ($(\omega_s \omega_r)_{/Rotor}$)
 - \Rightarrow Moment magnétique ($(\omega_s \omega_r)_{/Rotor}$)
 - \Leftrightarrow Moment magnétique ($(\omega_s)_{/Stator}$)
 - ⇒ Couple électromagnétique.

Mise en équations (1) :

Champs statoriques :

$$\overrightarrow{B} = \begin{bmatrix} -B_0 \sin(\omega_s t) \\ B_0 \cos(\omega_s t) \end{bmatrix}$$

→ Flux Rotorique:

$$\Phi = \overrightarrow{B} \cdot \overrightarrow{S} = \begin{bmatrix} -B_0 \sin(\omega_s t) \\ B_0 \cos(\omega_s t) \end{bmatrix} \cdot \begin{bmatrix} S \cos(\omega_r t) \\ S \sin(\omega_r t) \end{bmatrix}$$
$$= B_0 S \sin((\omega_s - \omega_r)t)$$

Mise en équations (2) :

⇒ Force électromotrice :

$$E = -\frac{d\Phi}{dt} = -B_0 S (\omega_s - \omega_r) \cos(\omega_s - \omega_r) t$$

⇒ Courant rotorique :

$$E = Ri + L\frac{di}{dt}$$

$$\Rightarrow \underline{E} = [R + \jmath L(\omega_s - \omega_r)] \underline{i}$$

$$\Rightarrow \underline{I} = \frac{\underline{E}}{R^2 + L^2(\omega_s - \omega_r)^2} (R + \jmath L(\omega_s - \omega_r))$$

$$\Rightarrow I = \frac{E}{R^2 + L^2(\omega_s - \omega_r)^2} (R\cos(\omega_s - \omega_r)t - L(\omega_s - \omega_r)\sin(\omega_s - \omega_r)t)$$

Mise en équations (3) :

■ ⇒ Moment magnétique :

$$\overrightarrow{M} = SI \begin{bmatrix} \cos(\omega_r t) \\ \sin(\omega_r t) \end{bmatrix}$$

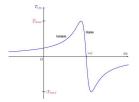
⇒ Couple électromagnétique :

$$\overrightarrow{C} = \overrightarrow{M} \wedge \overrightarrow{B} = SI B_0 \begin{bmatrix} \cos(\omega_r t) \\ \sin(\omega_r t) \end{bmatrix} \wedge \begin{bmatrix} -\sin(\omega_s t) \\ \cos(\omega_s t) \end{bmatrix}$$

$$= SI B_0 \cos(\omega_s - \omega_r) t \overrightarrow{e_z}$$

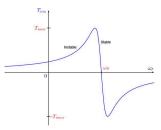
$$= \frac{S^2 B_0^2 (\omega_s - \omega_r)}{R^2 + L^2 (\omega_s - \omega_r)^2} \times$$

$$[R \cos^2(\omega_s - \omega_r) t - L(\omega_s - \omega_r) \sin(\omega_s - \omega_r) t \cos(\omega_s - \omega_r) t]$$


Mise en équations (4) :

ullet \Rightarrow Couple Moyen :

$$< C> = rac{S^2 B_0^2 (\omega_s - \omega_r)}{R^2 + L^2 (\omega_s - \omega_r)^2} \left[rac{R}{2}
ight]$$


Définition du glissement : $g = \frac{\omega_{\mathrm{S}} - \omega_{\mathrm{f}}}{\omega_{\mathrm{S}}}$

• Couple en fonction de $g : < C > = \frac{S^2 B_0^2 R \ g \omega_s}{2(R^2 + L^2 g^2 \omega_s^2)}$

Propriétés:

- Couple nul au synchronisme $(g = 0) \Rightarrow$ asynchronisme
- Couple élevé ⇒ glissement élevé

Décrochage si C > C_{max}

Machine asynchrone: Comparatif

Avantages:

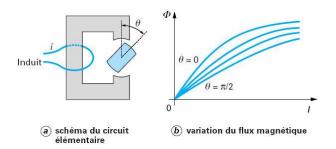
- Faible coût (y compris pour des fortes puissances).
- Très robuste (pas de pièce de contact)
- Bon rendement.

Inconvénients:

- Couple démarrage faible.
- $\omega_r \neq \omega_s \Rightarrow$ asynchronisme
- Loi de commande en vitesse non linéaire ⇒ commande vectorielle.

Utilisée dans l'industrie pour son faible coût à la construction et à l'usage.

Machine asynchrone: Commande


- On souhaite une **commande simple** de type $\Omega = KU$ comme pour la machine à courant continu.
- On a une machine dont la vitesse de rotation n'est pas directement liée à la fréquence d'alimentation
- On a une machine dont le couple est faible au démarrage.

⇒ Autopilotage

- Contrôle scalaire: Contrôle du couple par la mesure de la vitesse réelle de rotation et par asservissement des courants par rapport à des consignes sinusoïdales.
- Contrôle vectoriel : pilotage du couple et de la vitesse par asservissement sur des consignes constantes après transformation vectorielle.

Variation de flux magnétique en fonction de la position du rotor :

Énergie, coénergie et couple :

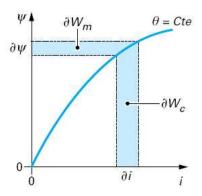
Tension dans un enroulement :

$$U = RI + \frac{d}{dt}\Phi$$

Puissance électrique :

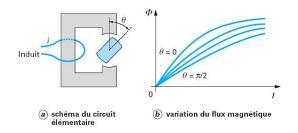
$$P = UI = RI^2 + i\frac{d}{dt}\Phi$$

Cette puissance se répartit comme suit :


$$P = \underbrace{Ri^2}_{P_{Joule}} + \underbrace{C\Omega}_{P_{Meca}} + \underbrace{\frac{dW_m}{dt}}_{P_{Magan}}$$

On en déduit (théorème des travaux virtuels) :

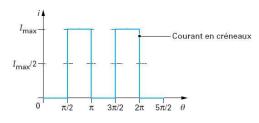
$$C \delta(\theta) = i \delta(\Phi) - \delta(W_m)$$

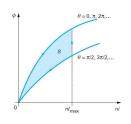

- A Φ constant, on a : $C = \frac{\partial W_m}{\partial \theta}$. W_m est l'énergie magnétique.
- A i constant, on a : $C = \frac{\partial W_c}{\partial \theta}$, avec $W_c = i\Phi W_m$. W_c est la coénergie magnétique.

Pour un matériau non-saturé : $\Phi = Li$. On a donc :

$$W_m = W_c = \frac{1}{2}Li^2$$

Dans une machine à réluctance variable, L dépend de θ :

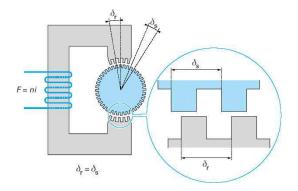

$$L = L_0 + L_1 cos(2\theta) + \dots$$


On crée un **couple moteur en synchronisant** l'évolution des **courants** et celle de $L(\theta)$.

Moteur à réluctance variable : principe de fonctionnement

Alimentation avec un courant en créneau :

Couple moyen durant un déplacement de θ d'une valeur de π :


$$C = \frac{S}{\pi} = \frac{L_1 I_{max}^2}{\pi}$$

en limitant au premier harmonique le développement de L.

Moteur à réluctance variable : principe de fonctionnement

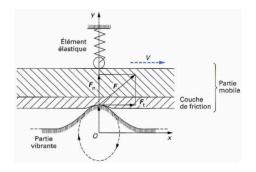
Machine à réluctance variable monophasée (à double saillance) :

Moteur à réluctance variable : Comparatif

Avantages:

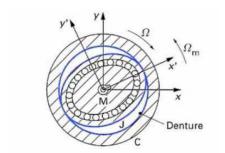
- Faible coût (y compris pour des fortes puissances).
- Très robuste (pas de pièce de contact).

Inconvénients:


- Nécessite d'un autopilotage en courant (comme pour la machine synchrone).
- Rapport encombrement-couple assez faible.

Utilisé dans l'industrie pour son faible coût.

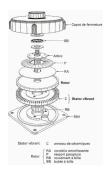
Moteur piézoélectrique : principe de fonctionnement

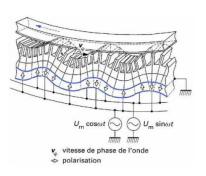

Principe de fonctionnement :

- Piézoélectricité : Tension ⇒ Déformation mécanique.
- Déformation mécanique ⇒ entraîne le rotor par friction.

Moteur piézoélectrique : exemple

Moto-réducteur elliptique


- M moyeu générant la déformation elliptique J jante flexible immobilisée en rotation
- C couronne rigide
- Intérêt : moteur et réducteur intégré



Moteur piézoélectrique : exemple

Moteur annulaire à onde progressive.

Utilisé pour le réglage des autofocus (Canon USM).

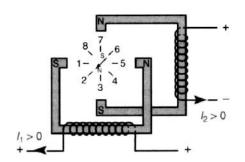
 Intérêt : glisse en cas d'action manuelle sur le rotor (retouche du point)

Moteur piézoélectrique : Comparatif

Avantages:

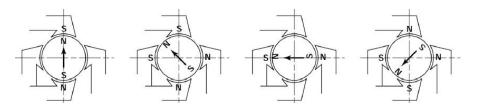
- Moteur à friction : pas de casse mécanique en cas de blocage
- Taille très réduite ⇒ micro-systèmes mécatroniques.

Inconvénients :


Nécessite d'un autopilotage en tension.

Utilisé dans l'industrie des micro-systèmes mécatroniques (montres, appareils photos...).

Moteur pas à pas : principe de fonctionnement


Principe de fonctionnement :

- Aimant dans un champ \overrightarrow{B} tournant par incrément d'angle.
- Réluctance variable dans un champ \overrightarrow{B} tournant par incrément d'angle.

Moteur pas à pas : principe de fonctionnement

Séquence de pilotage en mode demi-pas

 Intérêt : le mode demi-pas permet de positionner le rotor entre deux enroulements ⇒ mouvement plus fluide.

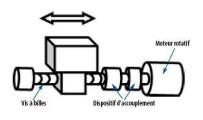
Moteur pas à pas : principe de fonctionnement

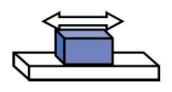
Modes de fonctionnement :

- Fonctionnement par à-coups : oscillations dues au démarrage et à l'arrêt du rotor à chaque pas ⇒ énergétiquement inefficace + vibrations.
- Fonctionnement en continu : mouvement proche de la machine synchrone auto-pilotée.

Moteur pas à pas : Comparatif

Avantages:


• Pilotage en boucle ouverte : on connaît la position angulaire.


Inconvénients :

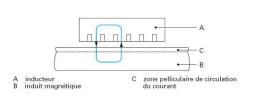
- Risque de décrochage (perte de pas).
- Faible couple.
- Consommation à l'arrêt.

En perte de vitesse dans l'industrie (jouets, positionnement à couple faible...).

Actionneurs linéaires

- Intérêt : permet de se passer d'un dispositif mécanique complexe de conversion rotation/translation
 - \Rightarrow précision accrue ($\simeq 0.5 \mu m$).
- Inconvénient : coût assez élevé.

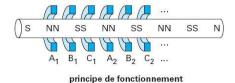
Actionneurs linéaires : principe de fonctionnement


Principe général : moteur traditionnel déroulé dans le plan

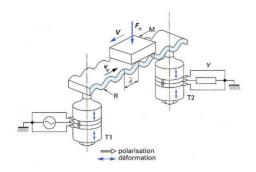
- Partie mobile à enroulements plans ⇒ champ en déplacement transversal.
- Chemin magnétique fixe :
 - avec des aimants (équivalent à la machine synchrone).
 - avec des barres métalliques ou massif (équivalent à la machine asynchrone à cage d'écureuil).
 - à **denture** (équivalent à la machine à réluctance variable).

Actionneurs linéaires : exemples

Moteur linéaire à induit massif (asynchrone) : Aérotrain (ligne expérimentale Paris-Orléans)



Actionneurs linéaires : exemples


Moteur linéaire à aimant permanents (synchrone) : Etel

Actionneurs linéaires : exemple

Moteur linéaire piézoélectrique à onde progressive

Actionneurs linéaires : Comparatif

Avantages:

- Excellente précision en translation.
- Vitesse en fonctionnement précis (5 m/s au lieu de 1.5 m/s avec une vis à bille).
- Faible inertie (par rapport à un système avec vis sans fin).
- Maintenance réduite (pas de graissage de la vis).

Inconvénients:

- Coût de l'actionneur (encore assez peu diffusé).
- Coût du chemin magnétique (en particulier dans le cas d'un chemin à aimants permanents).

Actionneur émergent dans l'industrie.

Bibliographie

- Convertisseurs statiques. Modélisation et commande de la machine asynchrone.
 Caron Hautier. (Technip)
- Introduction à l'electrotechnique approfondie. Séguier, Notelet et Lesenne (Tec et Doc).
- Convertisseurs de l'électronique de puissance (Tomes 1, 2, 3, 4). Séguier (Tec et Doc).
- Techniques de l'ingénieur (http://www.techniques-ingenieur.fr)
- Commande électronique des moteurs électriques. M. Pinard (Dunod).

Questions?

- Questions
- Contact : vgies@hotmail.com