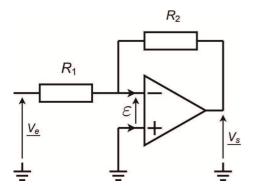
SE1 : Electronique analogique - Enoncés de TD

Valentin Gies - Stéphane Karoski

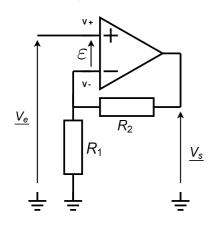
Contents


1	TD 1 : Amplificateur opérationnel en régime linéaire 1.1 Amplificateur inverseur	3
	1.2 Amplificateur non-inverseur	3
2	TD 2: Amplificateur opérationnel en régime linéaire (suite) 2.1 Soustracteur non pondéré	5 6 6
3	TD 3 : Amplificateur opérationnel en régime linéaire (suite) 3.1 Résistance négative	7 7 7 8
4	TD 4 : Systèmes électroniques du premier ordre 4.1 Circuit R-C série	9
5	TD 5 : Systèmes électroniques du premier ordre 5.1 Integrateur inverseur 5.2 Dérivateur inverseur 5.3 Circuit R-L-C série (2^e ordre)	11 11 11 11
6	TD 6: Systèmes électroniques en régime harmonique - filtrage 6.1 Filtre passe-bas passif : Circuit R-C série en régime harmonique 6.2 Filtre passe-haut passif : Circuit R-C série en régime harmonique	13 13 13
7	TD 7: Systèmes électroniques en régime harmonique - filtrage (suite) 7.1 Filtre passe-bas actif d'ordre 1	14 14 14 15
8	TD 8 : Systèmes électroniques non linéaires - AOP saturé 8.1 Générateur de signaux carrés	

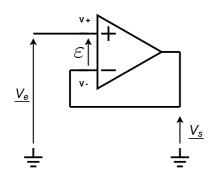
9	TD	9 : Systèmes électroniques non linéaires - diodes	18
	9.1	Diodes: Redressement mono-alternance	18
	9.2	Diodes : Écrêteur de tension à diodes	18
10	TD	10 : Systèmes électroniques non linéaires - diodes	20
	10.1	Diodes : Détecteur de crêtes	20
	10.2	Diodes : Redresseur mono-alternance filtré	20
	10.3	$\label{eq:Diodes} \mbox{Diodes}: \mbox{Redresseur double alternance filtr\'e} \ \dots \ $	22
11	TD	11 : Systèmes électroniques non linéaires - diode Zener	23
	11.1	Régulation de tension à l'aide d'une diode Zener	23
		11.1.1 Régulation aval	23
		11.1.2 Régulation amont	23
		11.1.3 Synthèse	23
12	TD	12 : Révisions	24

1 TD 1 : Amplificateur opérationnel en régime linéaire

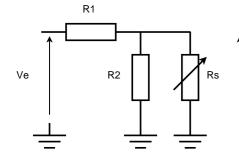
1.1 Amplificateur inverseur


$$R_1 = 1k\Omega, R_2 = 5k\Omega$$

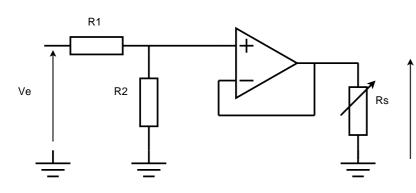
- 1. Exprimer V_s en fonction de V_e .
- 2. Proposer un nom pour ce montage.
- 3. Entre quelles valeurs peut évoluer V_e pour que le montage fonctionne en linéaire ? Que se passe-t-il en dehors de ce domaine?
- 4. Que vaut la résistance d'entrée de ce montage ?


Amplificateur non-inverseur

$$R_1 = 1k\Omega, R_2 = 5k\Omega$$


- 1. Exprimer V_s en fonction de V_e .
- 2. Proposer un nom pour ce montage.
- 3. Entre quelles valeurs peut évoluer V_e pour que le montage fonctionne en linéaire ? Que se passe-t-il en dehors de ce domaine?
- 4. Que vaut la résistance d'entrée de ce montage?

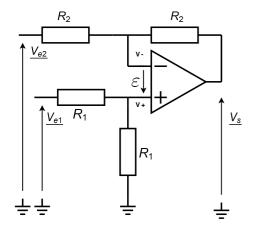
1.3 Suiveur



- 1. Exprimer V_s en fonction de V_e .
- 2. Entre quelles valeurs peut évoluer V_e pour que le montage fonctionne en linéaire? Que se passe-t-il en dehors de ce domaine?

Pour comprendre l'intérêt de ce montage, on se propose de réaliser les montages suivants :

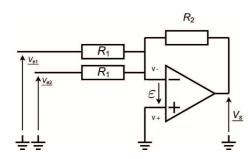
- $_{\sf Vs}$ 1. Exprimer V_s en fonction de $V_e.$ 2. Que se passe-t-il sur V_s lorsqu'on fait varier la résistance R_s ?



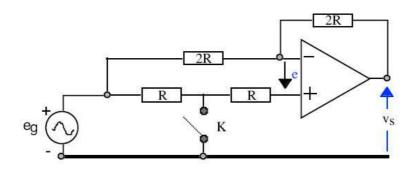
- 1. Exprimer V_s en fonction de V_e .
- $_{\text{Vs}}$ 2. Que se passe-t-il sur V_s lorsqu'on fait varier la résistance R_s ?
 - 3. En déduire l'intérêt du montage suiveur.

2 TD 2 : Amplificateur opérationnel en régime linéaire (suite)

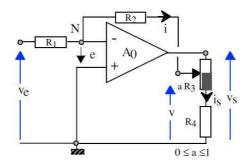
2.1 Soustracteur non pondéré


$$R_1 = R_2 = 47k\Omega$$

- 1. Exprimer vS en fonction de V_{e1} et de V_{e2} .
- 2. Pour $V_{e2}=0$, entre quelles valeurs peut évoluer V_{e1} ?
- 3. Pour $V_{e1}=0$, entre quelles valeurs peut évoluer V_{e2} ?


2.2 Additionneur inverseur non pondéré

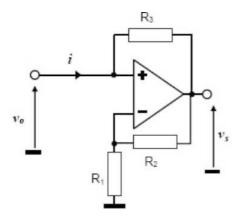
$$R_1 = 4,7k\Omega, R_2 = 10k\Omega$$


- 1. Exprimer V_s en fonction de V_{e1} et V_{e2} .
- 2. Pour $V_{e2}=0$, entre quelles valeurs peut évoluer V_{e1} ?
- 3. Pour $V_{e1}=0$, entre quelles valeurs peut évoluer V_{e2} ?

2.3 Amplificateur dual inverseur / non-inverseur

Déterminer l'amplification en tension $\frac{V_S}{e_g}$ du montage donné ci-dessus pour les deux positions de l'interrupteur K.

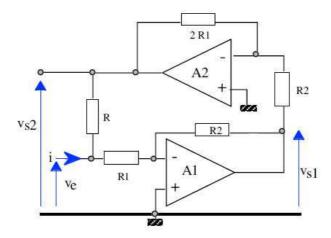
2.4 Amplificateur à gain ajustable



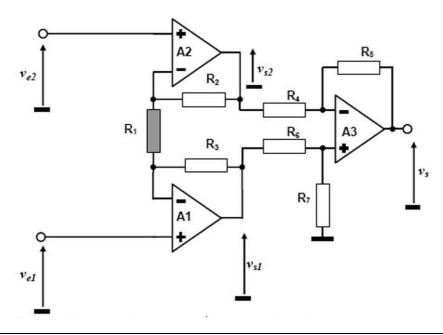
- 1. Redessiner le montage en remplaçant le potentiomètre par deux résistances dépendantes de α , la position du curseur du potentiomètre.
- 2. Déterminer l'expression de V en fonction de V_e .
- 3. Déterminer l'expression de V_S en fonction de V en supposant que le courant qui passe dans R_2 est négligeable par rapport au courant qui circule dans le potentiomètre et dans R_4 .
- 4. En déduire l'expression de V_S en fonction de V_e .
- 5. On donne : $R_1 = 100k\Omega$, $R_2 = 100k\Omega$, $R_3 = 5k\Omega$, $R_4 = 1k\Omega$. Calculer la valeur du gain pour les positions extrèmes du potentiomètre.

3 TD 3 : Amplificateur opérationnel en régime linéaire (suite)

3.1 Résistance négative


On considère le montage suivant :

- 1. Déterminer V_s en fonction de V_e .
- 2. Déterminer le domaine de fonctionnement linéaire du montage : entre quelles valeurs V_{min} et V_{max} de la tension d'entrée V_e la tension de sortie V_s est-elle comprise entre -15V et +15V?
- 3. Dans le cas où le fonctionnement est linéaire (vous n'avez pas besoin du résultat de la question précédente pour continuer l'exercice), exprimer le courant i en fonction de V_e , R_1 , R_2 et R_3 . En déduire la résistance d'entrée $R_e = \frac{V_e}{i}$ du montage.
- 4. Quel nom donneriez-vous à ce montage? A quoi peut-il servir?


3.2 Amplificateur à forte résistance d'entrée

On considère le montage suivant :

- 1. Déterminer l'expression des amplifications en tension : $A_1 = \frac{V_{s1}}{V_e}$ et $A_2 = \frac{V_{s2}}{V_{s1}}$. En déduire l'amplification globale du montage : $A = \frac{V_{s2}}{V_e}$.
- 2. Calculer la résistance d'entrée du montage. Déterminer ensuite la valeur de R permettant d'obtenir une résistance d'entrée $R_e=100k\Omega$ sachant que $R_1=10k\Omega$ et $R_2=100k\Omega$.

3.3 Amplificateur différentiel d'instrumentation

Important:
$$R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R$$
 et $R_1 = \frac{1}{k}R$

1. Analyse préliminaire :

- (a) Justifier que chacun des étages $A_1,\,A_2$ et A_3 fonctionne en régime linéaire.
- (b) Quelle est la fonction réalisée par l'étage A_3 ?

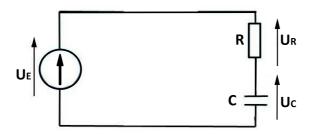
2. **Etage A3**:

- (a) Exprimer v_{3+} en fonction de v_{s1} .
- (b) Exprimer v_{3-} en fonction de v_{s2} et de v_s .
- (c) En déduire une expression de v_s en fonction de v_{s1} et de v_{s2} .

3. **Etage A1**:

- (a) Exprimer v_{2-} en fonction de v_{e2} .
- (b) En appliquant le théorème de Millman en v_{1-} , exprimer v_{1-} en fonction de v_{s1} et de v_{e2} .

4. **Etage A2**:

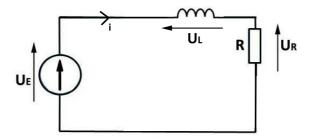

- (a) Exprimer v_{1-} en fonction de v_{e1} .
- (b) En appliquant le théorème de Millman en v_{2-} , exprimer v_{2-} en fonction de v_{s2} et de v_{e1} .

5. Synthèse:

- (a) En remarquant (et en justifiant) que $v_{1-} v_{2-} = v_{e1} v_{e2}$, déterminer la valeur de la différence $v_{s1} v_{s2}$ en fonction de $v_{e1} v_{e2}$.
- (b) Déterminer l'expression de v_s en fonction de v_{e1} et de v_{e2} .
- (c) Quel peut être l'intérêt d'un tel montage. Expliquer en détail ses avantages dans le cas où il permet d'amplifier le signal provenant d'un capteur lointain et fonctionnant dans un environnement très perturbé.

4 TD 4 : Systèmes électroniques du premier ordre

4.1 Circuit R-C série


Le circuit est dans un premier temps alimenté par une tension $U_E = E$.

- 1. Déterminer l'équation différentielle en U_C .
- 2. Résoudre cette équation différentielle en considérant qu'à $t=0,\,U_C=0.$
- 3. Vers quelle valeur tend la tension aux bornes du condensateur ?
- 4. Déterminer à quel instant le condensateur est chargé à 63%.
- 5. Déterminer à quel instant le condensateur est chargé à 90%.
- 6. Représenter l'évolution de U_C en fonction du temps.
- 7. Déterminer l'équation de la tangente à U_C à t=0.

Le circuit est à présent alimenté par une tension $U_E = 0$.

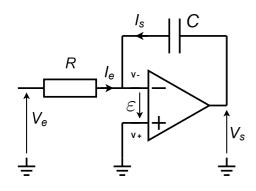
- 1. Déterminer l'équation différentielle en U_C .
- 2. Résoudre cette équation différentielle en considérant qu'à $t=0,\,U_C=E.$
- 3. Vers quelle valeur tend la tension aux bornes du condensateur ?
- 4. Déterminer à quel instant le condensateur est-il déchargé à 63%.
- 5. Déterminer à quel instant le condensateur est-il déchargé à 90%.
- 6. Représenter l'évolution de U_C en fonction du temps.
- 7. Déterminer l'équation de la tangente à U_C à t=0.

4.2 Circuit R-L série

Le circuit est dans un premier temps alimenté par une tension $U_E = E$.

1. Déterminer l'équation différentielle en i.

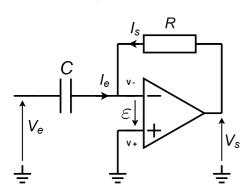
- 2. Résoudre cette équation différentielle en considérant qu'à $t=0,\,i_L=0.$
- 3. Vers quelle valeur tend le courant?
- 4. Déterminer à quel instant le courant est-il établi à 63%.
- 5. Déterminer à quel instant le courant est-il établi à 90%.
- 6. Représenter l'évolution de i en fonction du temps.
- 7. Déterminer l'équation de la tangente à i à t=0.


Le circuit est à présent alimenté par une tension $U_E=0$.

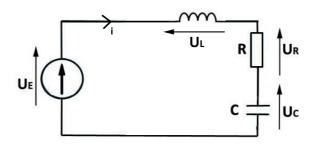
- 1. Déterminer l'équation différentielle en i.
- 2. Résoudre cette équation différentielle en considérant qu'à $t=0, i_L=\frac{E}{R}$.
- 3. Vers quelle valeur tend le courant ?
- 4. Déterminer à quel instant le courant est-il établi à 63%.
- 5. Déterminer à quel instant le courant est-il établi à 90%.
- 6. Représenter l'évolution de i en fonction du temps.
- 7. Déterminer l'équation de la tangente à i à t=0.

5 TD 5 : Systèmes électroniques du premier ordre

5.1 Integrateur inverseur


 $R = 47k\Omega, C = 10nF$

- 1. Exprimer V_s en fonction de V_e .
- 2. Quelle est l'équation de $V_s(t)$ quand $V_e = cte = +10V$?
- 3. Quelle est l'équation de $V_s(t)$ quand $V_e = cte = -10V$?
- 4. Quelle est l'allure du chronogramme de $V_s(t)$ quand la tension d'entrée est un signal carré variant de -5V à la fréquence f=1 kHz ? (on supposera que V_s à t=0 vient de passer à +5V)


5.2 Dérivateur inverseur

 $R = 47k\Omega, C = 10nF$

- 1. Exprimer V_s en fonction de V_e .
- 2. Quelle est l'allure du chronogramme de $V_s(t)$ quand la tension d'entrée est un signal triangulaire variant entre -5V et +5V à la fréquence f=1kHz?
- 3. Quelle est l'allure du chronogramme de $V_s(t)$ quand la tension d'entrée est un signal triangulaire variant entre 0V et +10V à la fréquence f=1kHz? Commenter par rapport au résultat précédent.

5.3 Circuit R-L-C série (2^e ordre)

Le circuit est dans un premier temps alimenté par une tension $U_E = E$.

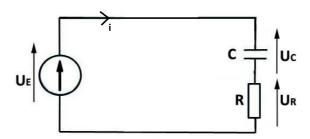
- 1. Déterminer l'équation différentielle en U_C .
- 2. Résoudre cette équation différentielle en considérant qu'à $t=0,\,U_C=0$
- 3. Vers quelle valeur tend la tension aux bornes du condensateur ?
- 4. Représenter l'évolution de U_C en fonction du temps.

Le circuit est à présent alimenté par une tension $U_E=0$.

1. Déterminer l'équation différentielle en U_C .

- 2. Résoudre cette équation différentielle en considérant qu'à $t=0,\,U_C=E$
- 3. Vers quelle valeur tend la tension aux bornes du condensateur ?
- 4. Représenter l'évolution de U_C en fonction du temps.

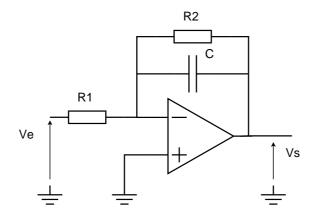
6 TD 6 : Systèmes électroniques en régime harmonique - filtrage


6.1 Filtre passe-bas passif : Circuit R-C série en régime harmonique

Le circuit est alimenté par une tension $U_E = U_0 \cos \omega t$.

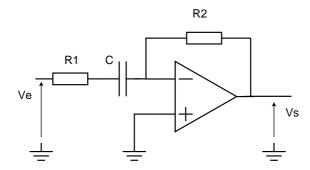
- 1. Déterminer la fonction de transfert $\underline{H} = \frac{\underline{U_C}}{\underline{U_E}}$ du montage.
- 2. Aux basses fréquences ($\omega \to 0$), simplifier la fonction de transfert en négligeant ce qui peut l'être. En déduire dans ce cas ($\omega \to 0$) l'expression du gain en dB et la phase ϕ de U_C par rapport à U_E .
- 3. Aux fréquences élevées $(\omega \to \infty)$, simplifier la fonction de transfert en négligeant ce qui peut l'être. En déduire dans ce cas $(\omega \to \infty)$ l'expression du gain en dB et la phase ϕ de U_C par rapport à U_E .
- 4. Tracer le diagramme de Bode asymptotique associé à la fonction de transfert \underline{H} .
- 5. Quel peut-être l'intérêt d'un tel montage?

6.2 Filtre passe-haut passif: Circuit R-C série en régime harmonique



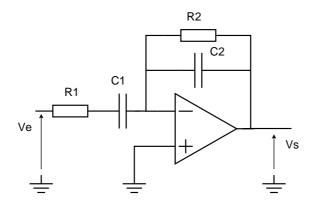
Le circuit est alimenté par une tension $U_E = U_0 \cos \omega t$.

- 1. Déterminer la fonction de transfert $\underline{H} = \frac{\underline{U_C}}{\underline{U_E}}$ du montage.
- 2. Aux basses fréquences $(\omega \to 0)$, simplifier la fonction de transfert en négligeant ce qui peut l'être. En déduire dans ce cas $(\omega \to 0)$ l'expression du gain en dB et la phase ϕ de U_C par rapport à U_E .
- 3. Aux fréquences élevées $(\omega \to \infty)$, simplifier la fonction de transfert en négligeant ce qui peut l'être. En déduire dans ce cas $(\omega \to \infty)$ l'expression du gain en dB et la phase ϕ de U_C par rapport à U_E .
- 4. Tracer le diagramme de Bode asymptotique associé à la fonction de transfert \underline{H} .
- 5. Quel peut-être l'intérêt d'un tel montage?


7 TD 7 : Systèmes électroniques en régime harmonique - filtrage (suite)

7.1 Filtre passe-bas actif d'ordre 1

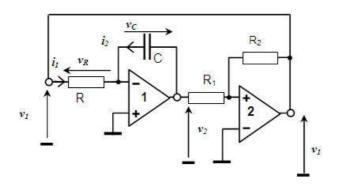
- 1. Déterminer V_{-} en utilisant le théorème de Millmann.
- 2. Déterminer V_+ .
- 3. Déterminer la fonction de transfert $\underline{H} = \frac{V_s}{\overline{V_e}}$ du montage.
- 4. Aux basses fréquences $(\omega \to 0)$, simplifier la fonction de transfert en négligeant ce qui peut l'être. En déduire dans ce cas $(\omega \to 0)$ l'expression du gain en dB et la phase ϕ de V_s par rapport à V_e .
- 5. Aux fréquences élevées $(\omega \to \infty)$, simplifier la fonction de transfert en négligeant ce qui peut l'être. En déduire dans ce cas $(\omega \to \infty)$ l'expression du gain en dB et la phase ϕ de V_s par rapport à V_e .
- 6. Tracer le diagramme de Bode asymptotique associé à la fonction de transfert \underline{H} .
- 7. Quel peut-être l'intérêt d'un tel montage?


7.2 Filtre passe-haut actif d'ordre 1

- 1. Déterminer V_{-} en utilisant le théorème de Millmann.
- 2. Déterminer V_+ .
- 3. Déterminer la fonction de transfert $\underline{H} = \frac{\underline{V_s}}{\underline{V_e}}$ du montage.

- 4. Aux basses fréquences $(\omega \to 0)$, simplifier la fonction de transfert en négligeant ce qui peut l'être. En déduire dans ce cas $(\omega \to 0)$ l'expression du gain en dB et la phase ϕ de V_s par rapport à V_e .
- 5. Aux fréquences élevées $(\omega \to \infty)$, simplifier la fonction de transfert en négligeant ce qui peut l'être. En déduire dans ce cas $(\omega \to \infty)$ l'expression du gain en dB et la phase ϕ de V_s par rapport à V_e .
- 6. Tracer le diagramme de Bode asymptotique associé à la fonction de transfert \underline{H} .
- 7. Quel peut-être l'intérêt d'un tel montage?

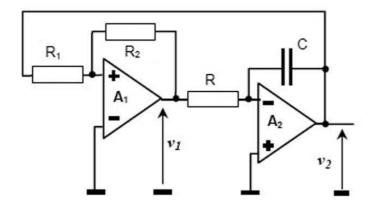
7.3 Filtre passe-bande actif



Note : ce filtre n'est pas un filtre du premier ordre, mais son importance justifie sa présence dans cette partie.

- 1. Déterminer V_{-} en utilisant le théorème de Millmann.
- 2. Déterminer V_+ .
- 3. Déterminer la fonction de transfert $\underline{H} = \frac{V_s}{\overline{V_e}}$ du montage.
- 4. Aux basses fréquences $(\omega \to 0)$, simplifier la fonction de transfert en négligeant ce qui peut l'être. En déduire dans ce cas $(\omega \to 0)$ le gain en dB et la phase ϕ de V_s par rapport à V_e .
- 5. Aux fréquences élevées $(\omega \to \infty)$, simplifier la fonction de transfert en négligeant ce qui peut l'être. En déduire dans ce cas $(\omega \to \infty)$ l'expression du gain en dB et la phase ϕ de V_s par rapport à V_e .
- 6. Tracer le diagramme de Bode asymptotique associé à la fonction de transfert H.
- 7. Quel peut-être l'intérêt d'un tel montage?

8 TD 8: Systèmes électroniques non linéaires - AOP saturé

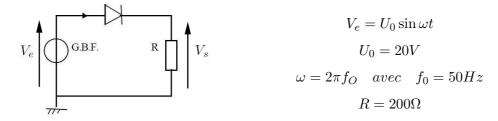

8.1 Générateur de signaux carrés

Les A.O. sont parfaits et sont alimentés en $\pm 15V$ continu. $R_1=10k\Omega,\ R_2=15k\Omega,\ R=10k\Omega$ et C=100nF.

- 1. Quelles fonctions réalisent chacun des deux étages ?
- 2. Déterminer les seuils de basculement de l'étage 2, donner l'allure de la courbe $v_1 = f(v_2)$.
- 3. Exprimer i_1 en fonction de v_1 et R. Calculer sa valeur lorsque $v_1 = +15V$.
- 4. Exprimer v_2 en fonction de v_C ainsi que i_2 en fonction de i_1 .
- 5. En exprimant la loi d'Ohm aux bornes du condensateur, déterminer une relation entre i_2 et v_C , en déduire ce que vaut $\frac{dv_2}{dt}$ lorsque $v_1 = +15V$.
- 6. Calculer le temps t_H mis par v_2 pour passer de -10V à +10V.
- 7. Donner l'allure des chronogrammes de v_1 et v_2 . On supposera qu'à $t=0,\,v_{1_0}=+15V$ et $V_{2_0}=+10V$.
- 8. Calculer la fréquence de fonctionnement.

8.2 Générateur de signaux triangulaires

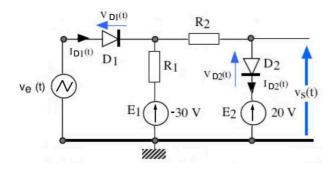
 $R_1=8k\Omega,\,R_2=10k\Omega,\,R=14,2k\Omega$ et C=22nF. Les A.O. sont parfaits et sont alimentés en $\pm 15V$ continu.


1. Quelle est la fonction réalisée par l'amplificateur opérationnel A_1 ?

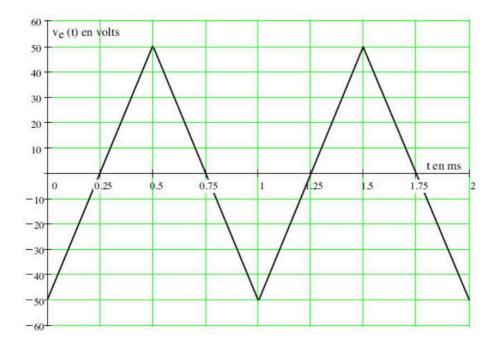
- 2. On rappelle que A_1 fonctionne en saturé. Quelles valeurs peut prendre la sortie v_1 de l'A.O. A_1 . A quelles conditions sur V_{1+} et V_{1-} ?
- 3. Déterminer l'expression de V_{1+} en fonction de v_1 et v_2 .
- 4. Pour chacune des valeurs que peut prendre v_1 , déterminer la condition sur v_2 permettant de rester dans un état stable (v_1 ne change pas). Faire les applications numériques.
- 5. Représener le graphe d'évolution de v_1 en fonction de v_2 .
- 6. Quelle fonction réalise l'étage A_2 ?
- 7. Déterminer la relation entre $\frac{dv_2}{dt}$ et v_1 (attention aux signes).
- 8. Dans le cas où $v_1 = +V_{sat} = 15V$, en déduire l'expression de v_2 en fonction du temps sachant qu'à $t=0, v_2=12V$.
- 9. Calculer la durée de cette phase de charge sachant qu'elle se termine quand $v_2 = -12V$.
- 10. Dans le cas où $v_1 = +V_{sat} = -15V$, en déduire l'expression de v_2 en fonction du temps sachant qu'à $t=0, v_2=-12V$.
- 11. Calculer la durée de cette phase de charge sachant qu'elle se termine quand $v_2 = +12V$.
- 12. Représenter sur un chronogramme les évolutions de v_1 et v_2 en fonction du temps.
- 13. Déterminer la fréquence de fonctionnement du montage.

9 TD 9 : Systèmes électroniques non linéaires - diodes

9.1 Diodes: Redressement mono-alternance

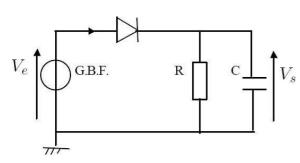

On suppose dans cet exercice que la diode est parfaite. La tension d'entrée V_e est sinusoïdale et son expression est donnée ci-dessous.

- 1. On suppose que la diode est passante. A quelle condition sur V_e cette hypothèse est vraie? Dans ce cas, que vaut V_s ?
- 2. On suppose que la diode est bloquée. A quelle condition sur V_e cette hypothèse est vraie ? Dans ce cas, que vaut V_s ?
- 3. Représenter l'évolution de V_e et de V_s sur un même graphe en fonction du temps.
- 4. Donner l'expression de la valeur moyenne de V_s en fonction de l'amplitude U_0 de V_e .
- 5. A quoi peut servir un tel montage?


9.2 Diodes : Écrêteur de tension à diodes

On considère le montage de la figure ci-dessous. Les diodes sont supposées idéales.

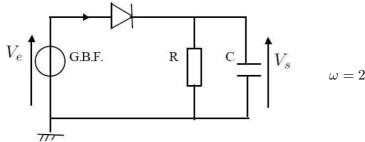
Le but de l'exercice est de déterminer le graphe de la tension de sortie $v_s(t)$ du montage lorsque celui-ci est excité par un générateur délivrant une tension $v_e(t)$ triangulaire périodique ayant :


- Une fréquence f de 1kHz.
- Une valeur moyenne nulle
- Une amplitude de 100V crête à crête, avec à t=0 : $v_e(t=0)=-50V$

- 1. A l'instant t = 0 où $v_e(t) = -50V$, on suppose que les diodes D_1 et D_2 sont bloquées. Vérifier cette hypothèse. Calculer V_s à t = 0.
- 2. On suppose à présent que D_1 et D_2 sont bloquées. A quelle condition sur V_e cette hypothèse est vraie? Dans ce cas donner l'expression de V_s .
- 3. On suppose à présent que D_1 est passante et D_2 est bloquée. A quelle condition sur V_e cette hypothèse est vraie ? Dans ce cas donner l'expression de V_s .
- 4. On suppose à présent que D_1 et D_2 sont passantes. A quelle condition sur V_e cette hypothèse est vraie (on donnera la condition sur D_2 en premier, et on montrera que cette condition convient aussi pour D_1)? Dans ce cas donner l'expression de V_s .

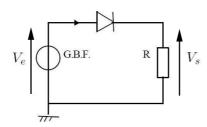
10 TD 10 : Systèmes électroniques non linéaires - diodes

10.1 Diodes : Détecteur de crêtes

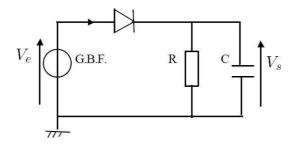


On suppose dans cet exercice que la diode est parfaite

- 1. A quelle condition la diode est-elle passante ? Dans ce cas, que vaut V_s ?
- 2. Lorsque la diode est bloquée, donner l'équation différentielle régissant le comportement de V_s . La résoudre.
- 3. Représenter l'évolution de V_e et de V_s sur un même graphe en fonction du temps.
- 4. Expliquer en quoi ce montage peut se comporter comme un détecteur de crêtes ?


10.2 Diodes : Redresseur mono-alternance filtré

On suppose dans cet exercice que la diode est parfaite. La tension d'entrée V_e est sinusoïdale et son expression est donnée ci-dessous.


$$V_e=U_0\sin\omega t$$

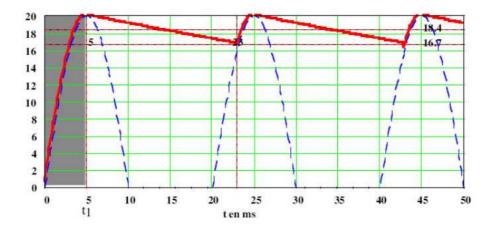
$$U_0=20V$$

$$\omega=2\pi f_O\quad avec\quad f_0=50Hz$$

$$R=200\Omega$$

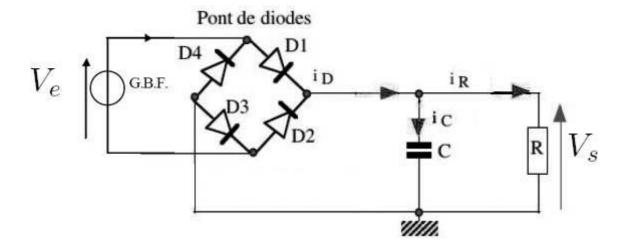
$$C=50\mu\Omega$$

Etude du montage sans la capacité de filtrage C



- 1. On suppose que la diode est passante. A quelle condition sur V_e cette hypothèse est vraie ? Dans ce cas, que vaut V_s ?
- 2. On suppose que la diode est bloquée. A quelle condition sur V_e cette hypothèse est vraie? Dans ce cas, que vaut V_s ?
- 3. Représenter l'évolution de V_e et de V_s sur un même graphe en fonction du temps.
- 4. Donner l'expression de la valeur moyenne de V_s en fonction de l'amplitude U_0 de V_e .

Etude du montage avec la capacité de filtrage C


- 1. On suppose la diode passante:
 - Déterminer l'expression de la tension V_s en fonction de V_e .
 - En utilisant l'expression de V_e donnée en début d'énoncé, déterminer l'expression des courants i_R dans la résistance et i_C dans le condensateur, en fonction de R, C, U_0 , ω .
 - A quelle condition la diode se bloque-t-elle?
 - En déduire l'instant t_1 de blocage de la diode (en n'oubliant pas de mettre votre calculatrice en mode radian pour la calcul de tan^{-1}).
- 2. On suppose à présent la diode bloquée, et on choisit par commodité l'instant du blocage comme instant initial, en le prenant égal à 5ms:

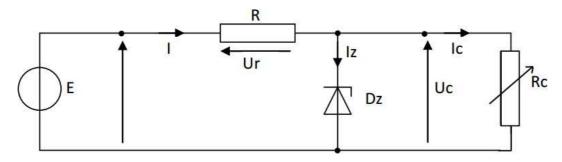
- \bullet En utilisant la loi des noeuds, établir l'équation différentielle régissant le comportement de V_s .
- Résoudre cette équation différentielle en posant $\tau = RC$.
- On suppose que τ est suffisament grand pour que la décharge exponentielle soit assimilable à une portion de droite comme représenté en sur la figure ci-dessus. Déterminer graphiquement au bout de combien de temps la diode redevient passante.
- Déterminer graphiquement l'ondulation de tension et la tension moyenne en sortie du montage (en supposera que l'on peut assimiler la portion de la courbe de V_s où la diode conduit à un segment de droite).
- 3. Durant quel pourcentage de chaque période la diode conduit-elle ?
- 4. Sachant que la charge R débite en permanence une puissance égale à $V_sI_R = \frac{V_s^2}{R}$, mais que l'alimentation ne fournit une puissance V_eI_D que durant la phase de conduction de la diode, que pouvez vous dire de l'amplitude du courant dans la diode durant la phase de conduction ?

5. Si V_e est fournie par le réseau EDF (équipé d'un transformateur), quelles sont les conséquences sur le dimensionnement de l'installation ? Que fait EDF pour compenser ces conséquences ?

10.3 Diodes : Redresseur double alternance filtré

Etude du montage sans la capacité de filtrage C

- 1. On suppose que les diodes D_1 et D_3 sont passantes et que D_2 et D_4 sont bloquées. A quelle condition sur V_e cette hypothèse est vraie? Dans ce cas, que vaut V_s ?
- 2. On suppose que les diodes D_2 et D_4 sont passantes et que D_1 et D_3 sont bloquées. A quelle condition sur V_e cette hypothèse est vraie? Dans ce cas, que vaut V_s ?
- 3. Représenter l'évolution de V_e et de V_s sur un même graphe en fonction du temps.
- 4. Donner l'expression de la valeur moyenne de V_s en fonction de l'amplitude U_0 de V_e .


Etude du montage avec la capacité de filtrage C

Reprendre l'étude de l'exercice précédent dans le cas du redressement à l'aide d'un pont de diodes.

11 TD 11 : Systèmes électroniques non linéaires - diode Zener

11.1 Régulation de tension à l'aide d'une diode Zener

La régulation de tension à diode Zener est une méthode très peu onéreuse puisqu'elle se limite à l'usage d'une diode Zener coûtant quelques centimes. Le but de cet exercice est de voir les limites de cette solution de régulation.

$$R = 100\Omega, V_z = 6.2V, I_{Zmax} = 0.2A$$

11.1.1 Régulation aval

La tension d'alimentation étant fixe et égale à 40V, il faut calculer les limites de variation de R_C permettant la stabilisation de la tension.

- Déterminer la valeur minimum de R_C pour que la diode Zener soit passante et régule la tension.
- Dans ce cas limite, déterminer les valeurs des courants I_C , I et I_Z .
- Supposons à présent que R_C a une valeur 4 fois supérieure : déterminer à nouveau les valeurs des courants I_C , I et I_Z . Que peut-on conclure dans ce cas ?
- Déterminer à présent la valeur maximale de R_C permettant d'obtenir un courant I_Z égal à I_{Zmax} .
- En déduire les valeurs min et max que peut prendre R_C en mode stabilisation de tension.

11.1.2 Régulation amont

La charge étant constante et égale à $R_C = 200\Omega$, il faut calculer les limites de variation de E permettant la stabilisation de la tension.

- Déterminer I_C et en déduire la plage de courant dans laquelle peut évoluer I.
- En déduire la plage de variation de *E* pour qu'il y ait stabilisation de la tension de sortie sans destruction de la diode Zener.

11.1.3 Synthèse

Dans le cas où $R_C = 200\Omega$, et avec E = 24V:

- Calculer les puissances maximum dissipées dans R et D_Z .
- Calculer la puissance fournie par l'alimentation P_e , la puissance reçue par la charge P_S ainsi que le rendement de ce circuit η .
- Quelle conclusion peut-on en tirer sur ce dispositif de stabilisation de tension?

12 TD 12 : Révisions